高病原性鳥インフルエンザ発生の状況と食品リスク

SFSS理事
内閣府食品安全委員会座長•農林水産省食料•農業•農村政策審議会家畜衛生部会委員
日本学術会議会員•東京大学名誉教授•中央畜産会理事•家畜改良センター理事
眞鍋 昇

4鳥インフルエンザの発生状況
一昨年2020年夏にシシベリアの営巣地の力もなどの水禽（すいきん）類で検出された鳥インフルエンザ H5N8車型ウイルスが，家禽（人間が飼っている
 が分かり，各々の病態が異なることが分かっています）。我が国では昨シーズン18県にわたる広範な地域で52事例が発生し（2年10力月ぶりに，2020年
卵を生産するために飼われている採卵鴟が約905万羽，鳥肉を生産する目的に肉養懇が約82万羽でした）を殺処分しなくてはならない惨状を経験しまし

 の地球規模での菖延状況をみると理解し易いと思いますが，地球規模で感染が広がる鳥インフルエンザでは感染防御について国際的に緊密な連携が次か せません。日本が単独で対応できるものではなくなっており，初期に発生した国々との情報や対策などを共有して世界規模で統御することが必要です。
鳥インフルエンザに感染したニワトリの卵や肉の安全性
焼却または埋却するとともに養鳥場中を消毒しますにのような防疫措置は，国内で健康に生きている他のニワトリに鳥インンクルエンザウイルスが感染 することを防止するために実施するものです）。加えて，発生養牁場の近隣の窐島場で飼われているこワトリや生産された卵の移動は禁止されますので，鳥インフルエンザウイルスで汚染された鳥内や㿼が流通して消費者のロに入ることはあり得ません。万が一鳥インフルルエン
鳥インフルルエンザウイルスは加熱（世界保健機関•WHOの食中毒防止のための加熱条件は，中心部 $70^{\circ} \mathrm{C}$ です）すれば不活化して感染性がなくなります

方や体調の悪い方は，加熱することをおお廌めします（日本では，鳥肉の生食によるカンピロバワター属菌やサリモネラ属菌などの細菌による食中毒が多発しているので，生肉や加熱不十分な篤肉を食べてはいけません）。

鳥インフルエンザに感染する可能性
これまで日本で発生した鳥インフルエンザウイルスがヒトに感染したことは報告されていません。しかし，べトナム社会主義共和国などの海外では， H5N1型ウイルスが生きた鳥を扱う市場（ライブマーケット）の生きた家离やペットの小鳥などからヒトに直接感染したことが疑われる事例が報告されて います［3］。WHOによると2003年～2019年までの紬16年間の世界の累積患者数は860人でうち死亡数が $454 人$（約 53% ）であったとのことです。上述 のように日本では，鳥インフルエンザウイルスに感染した家禽の処分や施設の消毒などを徹底的に行っていますから，ヒトが感染する可能性はほとんど ありません。

参考文献

1）農林水産省：高病原性鳥インフルエンザの発生状況について（2020年～2021年）• https：／／www．maff．go．jp／j／counci／／seisaku／eisei／kakin／77／attach／pdf

2）農林水崀省：会和3年度鳥インフルエンザに閉する情報について・https：／／／www．maff．go．jp／j／syouan／douei／tori／r3－
新型コロナウイルスの感染が始まつて2年にならます。この間，対西での交流からオンラインでの交流にシフトし，仕車の仕方も変わってきました。大学の授
編集後記

副理事長阿紀淮歓

食の安全と安心通信
 44

－取入入れた篗生管理のポイン
NPO法人食の安全と安心を科学する会 季刊誌 第44号

グリホサートの発がん性リスクについて

一般財団法人残留農薬研究所
原田孝則
［背景］グリホサートは，1970年に米国モンサント社によって開発されたアミ」酸系除草剤 で，1974年に米国で登録され，安全で有効な除草剤として世界的に普及し，現在も各国にて幅広く使用されている。ところが2015年に国際がん研究機開（IARC）が，グリホサートを Group 2A「ヒトに対しておそらく発がん性がある」に分類（表1）したことに端を発し，そ の波紋が各国に波及し，農薬業界のみならず農業作業者や一般消費者にまでグリホサートの安全性に対する不安を㮼る結果となっている。

IARCの見解］グリホサートをGroup 2Aに分類した根拠は，以下の如くである。 （1）限定的ではあるがヒトの疫学的調查結果からグリホサートの農業上使用暴露と非ホジ キンリンパ腫発生との間に相関性がみられた。
（2）動物実験において発がん性を示唆する所見がみられた。
表1．IARCの発がん性に関する分類基準

in vitro試験においてDNA•染色体の損傷が钼察された。
④ヒト細胞を用いたin vitro試験及び動物実験において，グリホサートの原体，製剤及び代謝物に酸化ストレスを話導する所見が钼察された。
［各国規制当局の見解］上記のIARCの発表を受｜けて米国環境保護庁（EPA），欧州食品安全機関（EFSA），我が国の食品安全委員会を含む関係各国 の規制当局は，今までに提出されたグリホサートの安全性試験データ及び関連文献を再度見直し，その安全性について詳細に再調查した結果，種々の遺伝毒性試験およびラット・マウスを用いた長期発がん性試験の結果はいずれも陰性であり，発がん性を示唆する所見があられなかったことから，現時点では「グリホサートには発がん性や遺伝䓯性は認められず，ラベル表示された適用方法で使用する限りは安全である」という見解で一致している。
［科学者としての著者の見解］IARCによるグリホサートの発がん性分類は，疫学
表2．農薬登録に必要な安全性試験の概要的調查を含む限定的調查•実験結果に基づいており，科学的に根拋不足であるこ とは否めず，特に評価対象に採択された実験データにおいても用量相関性，統計学的有意性，再現性等に欠けており，科学的信頼性が低い。一方，各国規制当局 のグリホサートの安全性評価結果は，テストガイドラインに準拠した膨大なGLP試験結果（表2）に基づき現代毒性学•毒性病理学を含む最新の科学的知見に照らし合わせ導き出されたものであり，信頼性や客観甡も高く，正しい判断基準に基づき得られたものと考えられる。従って，グリホサートは，ラベル表示された方法（適用作物残留基準值及び環境基準值がADIよりも小さくなるように散布量•時期•方法が指示されている）で使用される限り，ヒト及び環境に対し安全であると断言 される。化学物質のリスク評価において重要なことは，科学的に信頼できるデータ に基づき判断することであり，本稿がグリホサートの安全性に関する正しい理解の

	12．繁殖毒性試験：ラット 13．催奇形性試験：ラット，ウサギ
2．䓶浪性試験（皮膚，眼）：ウサギ，	
	15．代澵鳪験（動物，植物，家畐）
	16．土塿•水中動懸詞験
	18．有效成分分の詳状•安定性••分解性
7．運発性神経毒性試験（急性，28日） 7．：ニワトリ	19．環境中予測濃度算定腻験（水質污濁性 19．試験，模疑水田試験等）
	21．Toxicokinetics（OECD417） 20
	23．原体の縕成分析（有交成分，不綪物等

SFSS $=$

特定非営利活動法人食の安全と安心を科学する会

本部•研究室

TEL•FAX：03－6886－4894
「 113 －8657 東京都文京区弥生 $1-1$
東京大学農学部フ
ードサイエンス楝 $405-1$ 号窒

E－mailアドレス

info＠nposfss．com

htp：／／www．nposfss．con食の安全と安心 検々索

惣菜製造業におけるHACCPの考え方を取り入れた衛生管理のポイント

山口大学共同獣医学部
豊福 肇

1．はじめに
平成30年6月に食品衛生法が大幅に改正され，原則，全ての食品事業者がHACCPに沿つた衛生管理の実施が義務付けられた。この義務化された衛生管理の具体的な内容は，食品事業者が従前から実施していた施設•設備の衛生管理等の一般衛生管理を引き続き着実に実施すること，また，食品衛生上の危害の発生を防止するために特に重要な工程を管理するための取り組みであるHACCPに沿った衛生管理を導入することの 2 本の柱からなる。

2．HACCP導入のアプローチ

HACCP導入にあたつては2つのアプローチがある。
1 つ目は国際標準であるコーデックスのHACCP7原則に基づき，食品衛生上の危害の発生を防止するために特に重要な工程を管理するための取り組み（HACCPに基づく衛生管理，HACCPプランの作成）を行い，実施するものである
2 つ目は，1 が難しい小規模食品事業者等は，各事業者団体が作成し，厚生労働省が碓認した手引書を活用して，簡略化された対応を認める ＂HACCPの考え方を取り入れた衛生管理＂を実施するもので，対象となるのは小規模事業者（食品の製造に携わる者が 50 名未満）等である。この 2 つの衛生管理を合わせて「HACCPI沿った衛生管理」と呼んでいる。
いずれのアプローチにおいても，今回の改正の施行後に営業者が実施すべきことは
1）「一般的な衛生管理」及び「HACCPに沿った衛生管理」に関する基準に基づき衛生管理計画を作成し，従業員に周知澈底を図る，2）必要に応じて，清掃•洗浄•消毒や食品の取扱し等について具体的な方法を定めた手順書を作成する，3）衛生管理の実施状況を記録し，保存する，4）衛生管理計画及び手順書の効果を定期的に（及び工程に変更が生じたときなどはその都度）検証し（振り返り），必要に応じてその内容を見直すことである。

3．総菜協会の手引書

総莱業界においては，社団法人日本総莱協会が小規模な総菜工場向けHACCPの考え方を取り入れた衛生管理の手引書を作成している。手引書は （1）運営体制，（2）一般衛生管理，（3）工程管理（CCP），（4）文書管理，ひな型で構成されている

（1）一般衛生管理

施設䍗境の衛生管理として，1）施設•設犕の衛生管理，2）使用器具の衛生管理，3）使用水等の管理，4）ネズミ・昆虫対策，5）廃莱物，排水の取扱い，6）食品等の取扱い，7）検食の実施，8）情報の提供，9）回収•廃棄，また食品取扱者の衛生管理として1）食品取扱者の健康管理， 2）食品取扱者の衛生管理をカバーしている。
（2）工程管理
工程管理（CCP）については，1）加熱しない物莱では重要なハザードと管理手段は（1）野菜等の病原微生物と殺菌，（2）アレルグンと正確な表示， （3）工程での金属片と金属検出機，2）加熱後に包装する恝莱及び包装後に加熱する慗莱での重要なハザードと管理手段は（1）非苯胞形成菌と加熱 （2）芽胞形成菌と泠却，（3）アレルゲンと正確な表示，（4）工程での金属片と金属検出機となり，その管理のポイントが示されている。
加熱しない製品では
（1）野菜等の病原微生物と殺菌では，原材料の殺菌作業をおこなう際に，殺菌に使用する薬剤や希釈液が決められた濃度•時間等の条件で殺菌 がおこなわれているかを確認し記録する。
（2）アレルゲンと正碓な表示では，製品にラベルを貼りつける際に，製品に異物や包装の破れ等の異常がないこと，ラベル表示内容が正確である ことを確認し，使用したラベルをノート等に貼つて保管する
（3）工程での金属片と金属倹出機では，動作確認をした金属倹出機にすべての製品を通過させ，喫食した人が口唇等にけがをしないように，金属片が混入した製品を排除するとともに，テストピースを用いて動作確認した記録を保管する。
加熱する製品では
（1）製品への加熱が不十分とならないよう，最も火の通りづらい製品の中心部分の温度と加熱時間を確認し，記録する。
（2）製品の椧却が不十分とならないよう，製品の特性にあわせて椧却時の製品の中心部分の温度と浍却にかかった時間を確認し，その結果を製造日報等へ記録する。
（3）定期的な確認
一般衛生管理及び工程管理を実行する中で，正確に実施されているか または製品の安全性を確実に管理できているか一般衛生管理及び工程管理の記録の確認並びにクレーム内容の確認を通して検証するとともに，衛生管理計画の修正の必要性も判断する

企業や市民団体の食への取組み

日清食品ホールディングス株式会社

食品の機能と未来の食の追求

 ます。
現在，先進国では食糧が飽和し，オーバーカロリーや食料廃葉か新たな社会課題として顕在化しているほか，隠れ栄養失調が增加しています。また，先進国•途上国を問わず，健康的な生活や国の経済成長を妨げる低栄養と，生活習慣病を引き起こす過栄養の「栄養不良の二重重鿓荷」が国際的な栄養
代となりました。さらに，気候変動をはじめとする環境問題が地球規模で䫓在化する中，より噮境へ配慮した企業活動が求められています。日清食品グループは，世界が抱えるさまぜまなな課題の解決に責献する「未来の食」の追求を通じ，持綕可能な社会の実現に努めています。

テーマは＂Well－being \＆Sustainability＂
日清食品グループが「末来の食」について考えるときに大切にしているテーマは，人々が幸福で肉体的，精神的，社会的すべてにおいて満たされた状態（＝Well－being）です。Well－beingを実現するためには，持続可能な社会，食料システム，事業，製品の存在が不可欠であることから， Sustainabilityの分野にも注力して取り組んでいかねね゙なりません。日清食品グループは，Well－beingとSustainabilityを同時に追求しながら，事業を通して社会評題を根源的に解決していきます
具体的には，「ウェルネス」と「環境」の二分野で以下の取り組みを進め

ていきます。

 テイとFoodTechで新た食の可能性な逑し，オーバーカローや わ栄荺失調などの社会課題解決を目指しています。過学養•低栄盖の問題解決に貢献すべく製品の栄養成分を見直すことや，美しく健康な体づく
 プや眅志数量を扩大するほかアノルグン検相体制の充実なじの取り組 みを進めていきます。 たた「「睘境分㙒
また，「環境」分野では，より高いしべルの環境対策を推進し持続可能 な社会の実現と企業価値の向上を目指す環境戦略「EARTH FOOD
 んぱく質の比重を高めた製品の開発•眅西を行っています。

日清食品グルーブ 未来の食の追求

파영

IEARTM

「東京栄養サミット2021」におけるコミットメント
2021年12月7日と8日に開倠された「東京栄養サミット2021」では，前述の「栄養の二重負荷｣問題の解决を目指し，各国政府，国際嘰開，企業，市民団体などのリーダーが，世界の人々の栄養改善について幅広く議倫し，今後自らが実践する内容を堑約（コミットメント）としてまとめて発表し ました。日清食品グループとしても，Well－being\＆Sustainabilityの考えに基づき，＂栄養改善＂と＂持続可能な食料システム＂の実現に向けた下記 4 つ のコミットメントを発表しました。
全製品の健康•学萲性の向上を目指します。さらに，2030年までにウエルネス製品の当社グループ国内販売額を 230 億円に拡大させ，人々の健康垍進へ貢献します。
（2）食物アレルグン検查
2030年まででに，アレルゲン推奨表示品目に関し，精度を高めつつ一斉に検查できる新規法を開発します。本法を普及させ，累計10万回以上の検自 を実施し，食の安全性と食料供給の確保へ貢献します。
（3）代替肉
2030年までに，日清食品における即席皟具材「植物性たんぱく質」の国内使用量を年間1，100トンに引き上げ，代替肉の活用を進め，持続可能な食料システムの構筑へ頁献します
（4）食品廃裹物
2030年まで心，日清食品ブループの国内での流通•販売における廃莱物総量を2015年換算から50\％削減することで，持続可能な食料サプライチェー ンの構築に貢献します。

采養不良という世界的な課題の解決は，食品企業にとって極めて重要なテーマであり，日清食品グループは様々なステークホルダーと協力しなが ら取り組みを続けていきます。そして，これからもWell－being \＆Sustainabilityを実現する未来の食を追求しながら，事業を通して社会課題の根源的な解決を目指します。

